Salts Reference Sheet

•	Strong Acid $\xrightarrow{turns into a}$ Weaker Conjugate Base (doesn't hydrolyze, so not much effect on pH) • Strong Base $\xrightarrow{turns into a}$ Weaker Conjugate Acid (doesn't hydrolyze, so not much effect on pH)						
•	Weak Acid $\stackrel{turns into a}{\longrightarrow}$ Stronger Conjugate Base (strong enough to hydrolyze, so potential effect on pH)Weak Base $\stackrel{turns into a}{\longrightarrow}$ Stronger Conjugate Acid (strong enough to hydrolyze, so potential effect on pH)						
-	$ \begin{array}{c} \text{Ion from a Strong Acid} \xrightarrow{makes the solvn} \text{Neutral} \\ (is a weaker conj. base) \end{array} \qquad $						
•	$\begin{array}{c} \text{Ion from a Weak Acid} & \xrightarrow{makes the solvn} \\ (is a stronger conj. base) \end{array} \xrightarrow{makes the solvn} \\ \text{Basic} & \text{Ion from a Weak Base} \xrightarrow{makes the solvn} \\ \text{Acidic} \\ (is a stronger conj. acid) \end{array}$						
•	• Cation is a charged metal ion, and anion is from a strong acid $\xrightarrow{makes a}$ Acidic metal hydrate + Neutral anion - salt is acidic						
	 Neutral + Acidic = Acidic Neutral + Basic = Basic Neutral + Neutral = Neutral 						
	Acidic + Basic = ?						
	Use Ka and Kb to determine $Ka > Kb \rightarrow Acidic$ $Ka < Kb \rightarrow Basic$						
	$Ka = Kb \rightarrow Neutral$						
	• Kw = Ka x Kb $Kw = 1.0 \times 10^{-14}$ (if at 25 °C, may be different if not at 25°C)						
	If you are looking for the Ka of an acidic conjugate ion, use Kw and the Kb of the base it came from						
	$K_{acidic\ conj.\ ion} = \frac{K_w}{K_b\ (of\ the\ base\ that\ the\ ion\ came\ from)}}$						
	If you are looking for the Kb of a basic conjugate ion, use Kw and the Ka of the acid it came from						
	$K_{\text{hasis coni} ion} = \frac{K_{\text{w}}}{K_{\text{w}}}$						
	K_a (of the acid that the ion came from)						

R-45

7 Strong Acids (H ⁺)			8 Strong Bases (OH ⁻)	
All other acids are weak			All other bases are weak	
Hydrochloric acid	HCI		Lithium hydroxide	LiOH
Hydrobromic acid	HBr		Sodium hydroxide	NaOH
Hydroiodic	HI		Potassium hydroxide	KOH
Perchloric acid	HCIO ₄		Rubidium hydroxide	RbOH
Chloric acid	HCIO ₃		Cesium hydroxide	CsOH
Nitric acid	HNO ₃		Calcium hydroxide	Ca(OH) ₂
Sulfuric acid	H_2SO_4		Strontium hydroxide	Sr(OH) ₂
			Barium hydroxide	Ba(OH) ₂

Dougherty Valley High School Chemistry — Weak Acid/Base Reference Sheet Acid Dissociation Constant (K_a) Values for Some Weak Acids

Weak Acid	Chemical Formula	Ka
acetic	HC ₂ H ₃ O ₂	1.8 x 10 ⁻⁵
arsenic	H ₃ AsO ₄	5.6 x 10 ⁻³
arsenous	HAsO ₂	6 x 10 ⁻¹⁰
ascorbic	$H_2C_6H_6O_6$	8.0 x 10 ⁻⁵
benzoic	C ₆ H ₅ COOH	6.5 x 10 ⁻⁵
boric	H ₃ BO ₃	5.8 x 10 ⁻¹⁰
carbonic	H ₂ CO ₃	4.3 x 10 ⁻⁷
chloroacetic	CH ₂ CICOOH	1.4 x 10 ⁻³
citric	$H_3C_6H_5O_7$	7.4 x 10 ⁻⁴
formic	HCOOH	1.8 x 10 ⁻⁴
hydrazoic	HN ₃	1.9 x 10 ⁻⁵
hydrocyanic	HCN	4.9 x 10 ⁻¹⁰
hydrofluoric	HF	6.8 x 10 ⁻⁴
hydrosulfuric	H ₂ S	5.7 x 10 ⁻⁸
hypobromous	HBrO	2 x 10 ⁻⁹
hypochlorous	HCIO	3.0 x 10 ⁻⁸
hydrogen peroxide	H ₂ O ₂	2.4 x 10 ⁻¹²
iodic	HIO ₃	1.7 x 10 ⁻¹
malonic	$H_2C_3H_2O_4$	1.5 x 10 ⁻³
nitrous	HNO ₂	4.5 x 10 ⁻⁴
oxalic	$H_2C_2O_4$	5.9 x 10 ⁻²
phosphoric	H ₃ PO ₄	7.5 x 10 ⁻³
selenous	H ₂ SeO ₃	5.3 x 10 ⁻⁹
sulfurous	H ₂ SO ₃	1.7 x 10 ⁻²
tartaric	$H_2C_4H_4O_6$	1.0 x 10 ⁻³

Base Dissociation Constant (K_b) Values for Some Weak Bases

Weak Base	Chemical Formula	Kb
ammonia	NH ₃	1.8 x 10⁵
aniline	C ₆ H ₅ NH ₂	4.3 x 10 ⁻¹⁰
dimethylamine	(CH ₃) ₂ NH	5.4 x 10 ⁻⁴
ethylamine	C ₂ H ₅ NH ₂	6.4 x 10 ⁻⁴
hydrazine	N ₂ H ₄	1.3 x 10 ⁻⁶
hydroxylamine	HONH ₂	1.1 x 10 ⁻⁸
methylamine	CH ₃ NH ₂	4.4 x 10 ⁻⁴
pyridine	C ₅ H ₅ N	1.7 x 10 ⁻⁹
trimethylamine	(CH ₃) ₃ N	6.4 x 10 ⁻⁵